Exam. Code : 103206
 Subject Code : 1189

B.A./B.Sc. $6^{\text {th }}$ Semester MATHEMATICS
 (Linear Algebra)

Paper-I
Time Allowed-2 Hours] [Maximum Marks-50
Note :-There are EIGHT questions of equal marks. Candidates are required to attempt any FOUR questions.
I. (a) Show that the set $\mathrm{G}=\{\mathrm{i},-\mathrm{i}, 1,-1\}$ is an abelian group with respect to multiplication.
(b) Show that the set of all polynomials with integral coefficients, is not a vector space over \mathbb{R}.
II. (a) Prove that the necessary and sufficient condition for a non-empty subset W of a vector space $V(F)$ to be a subspace of V, is $\alpha x+\beta y \in W \forall \alpha, \beta \in F$ and $x, y \in W$.
(b) If $\mathrm{V}(\mathrm{F})$ be a vector space, prove that the set S of non-zero vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots ., \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$ is linearly dependent iff some element of S is a linear combination of the others.
III. (a) Prove that there exists a basis for each finite dimensional vector space.
(b) Find the co-ordinate vector of $(1,2,1)$ relative to ordered basis $\mathrm{B}=\{(2,1,0),(2,1,1),(2,2,1)\}$.
IV. (a) If U and W are two subspaces of a finite dimensional vector space $V(F)$, prove that : $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)$
(b) Let W_{1} and W_{2} be two subspaces of \mathbb{R}^{4};

$$
\begin{aligned}
& \mathrm{W}_{1}=\{(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}): \mathrm{b}+\mathrm{c}+\mathrm{d}=0\} \\
& \mathrm{W}_{2}=\{(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}): \mathrm{a}+\mathrm{b}=0, \mathrm{c}=2 \mathrm{~d}\}
\end{aligned}
$$

Find the basis and dimension of (i) W_{1} (ii) W_{2}.
V. (a) Show that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y)=(x+1,2 y, x+y)
$$

is not a linear transformation.
(b) Prove that every n-dimensional vector space over the field \mathbf{F} is isomorphic to space \mathbf{F}^{n}.
VI. (a) If $V(F)$ and $W(F)$ are vector spaces over the same field F and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation. Prove that :
(i) Range of T is a subspace of $\mathrm{W}(\mathrm{F})$
(ii) Null space of T is a subspace of $\mathrm{V}(\mathrm{F})$.
(b) For the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+2 \mathrm{y}-\mathrm{z}, \mathrm{y}+\mathrm{z}, \mathrm{x}+\mathrm{y}-2 \mathrm{z})$ find basis and dimension of :
(i) Range space of T
(ii) Null space of T .
VII. (a) Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for vector space $\mathrm{V}(\mathrm{F})$ and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation. Prove that for any

$$
\mathrm{v} \in \mathrm{~V},[\mathrm{~T} ; \mathrm{B}][\mathrm{v} ; \mathrm{B}]=[\mathrm{T}(\mathrm{v}) ; \mathrm{B}]
$$

(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(3 \mathrm{x}+\mathrm{z},-2 \mathrm{x}+\mathrm{y},-\mathrm{x}+2 \mathrm{y}+4 \mathrm{z})
$$

Find the matrix representation of T with respect to the basis $\mathrm{B}=\{(1,0,1),(-1,2,1),(2,1,1)\}$.
VIII. (a) Find a linear transformation $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ determined
by the matrix $M=\left[\begin{array}{rr}0 & 2 \\ 1 & -1 \\ 2 & 3\end{array}\right]$ with respect to ordered
bases $\mathrm{B}_{1}=\{(1,2),(0,3)\}$ for \mathbb{R}^{2}
and $\quad B_{2}=\{(1,1,0),(0,1,1),(1,1,1)\}$ for \mathbb{R}^{3}.
(b) Let $\mathrm{B}_{1}=\{(1,0),(0,1)\}$ and $\mathrm{B}_{2}=\{(1,3),(2,5)\}$ be two ordered bases for \mathbb{R}^{2}. Find the transition matrix Q from B_{2} to B_{1} and the transition matrix P from B_{1} to B_{2}. Also verify
$\mathrm{Q}=\mathrm{P}^{-1}$ and $\mathrm{P}\left[\mathrm{v}: \mathrm{B}_{2}\right]=\left[\mathrm{v}: \mathrm{B}_{1}\right] \quad \forall \mathrm{v} \in \mathbb{R}^{2}$.

